

Non-isolated Full Brick 1500Watts PFC Module

FEATURES

- Input voltage range: 85-264VAC
- Input frequency range: 45-65Hz
- ■1500W output power
- Efficiency up to 95%
- Power factor > 0.99, THD: 5%
- Single output: 380VDC
- Fixed switching frequency, predictable EMI
- Build-in inrush current limit
- Stable no-load operation
- Industry standard full brick footprint (4.67" × 3.35" × 0.50")
- Extensive self-protection, UVLO, OVP and OTP
- Auxiliary 6.5-8.5V bias supply
- Paralleled with current sharing
- Operating temperature range:-40°C to +100°C (baseplate temperature)
- Fully encapsulated, high reliability
- Flexible extra heat-sink mount type
- Compliance with IEC/EN 62368-1 standard

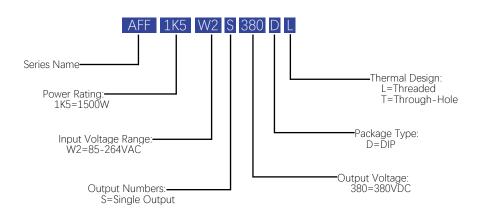
PRODUCT OVERVIEW

The AFF1K5W2 power factor correction module is a fundamental building block of an AC/DC power supply. Used in conjunction with bus capacitor, Density Power's DC/DC converters and recommended AC input filter, the PFC module draws high power factor (≥ 0.99) nearly perfect sinusoidal current from AC input.

Universal input voltage range of 85-264VAC (115/230V nominal) is ideal for automation, power grid, railway, semiconductor equipment, instrumentation, test and measurement, and distribution power system.

A wealth of self-protection features included input UVLO, OTP and OVP. Threaded or through holes are provided to allow easy mount or the addition of a heat sink for extended temperature operation. The operation temperature is -40°C to 100°C (baseplate temperature).

Aluminum baseplate with fully encapsulation technologies provide high reliability and outstanding thermal performance, is ideal for harsh environments applications which requie robust power converters.


The AFF1K5W2 series are designed to meet safety standards IEC/EN 62368-1.

Models Selections								
Basic Models	Input Voltage [VAC]	Input Voltage Range [VAC]	Output Voltage [VDC]	Output Current [A]	Power Factor typ.	Efficiency typ. [%]	Capacitive Load Max [µF]	Package [inch]
AFF1K5W2S380	115/230	85-264	380	4.1	0.99	95	2200	Full Brick

Non-isolated Full Brick 1500Watts PFC Module

Model Numbering

Absolute Maximum Ratings					
Parameters	Conditions	Min.	Тур.	Max.	Units
Input Voltage Continuous				290	VAC
Input Voltage Transient	< 100ms			300	VAC
ENA Pin Voltage	Referred to -Vout or GND	-0.3		35	VDC
ENA Pin Sink Current		0		100	mA
IOG Pin Voltage	Referred to -Vout or GND	-0.3		35	VDC
IOG Pin Sink Current		0		100	mA
AUX Pin Sourcing Curren	6.5-8.5V AUX supply	0		10	mA
Operating Baseplate Temperature		-40		100	°C
Operating Environment		-40		85	°C
Temperature					
Storage Temperature		-55		125	°C
Storage Humidity	Non condensing	20		95	%RH
Soldering Temperature	Wave Soldering < 10s			260	°C
Safety and EMC Compliance					
Conducted Emission	EN55032	С	lass B (wit	h externa	filter)
Radiated Emission	EN55032	С	lass B (wit	h externa	filter)
Conducted Susceptibility	IEC/EN61000-4-6		Level 3	3 Criteria <i>i</i>	4
Radiated Susceptibility	IEC/EN61000-4-3		10V/m	n Criteria /	4
EFT	IEC/EN61000-4-4	±2KV	Criteria A	(With ext	ernal filter)
Surge	IEC/EN61000-4-5	±2KV	Criteria A	(With ext	ernal filter)
ESD	IEC/EN61000-4-2	±6KV Contact ±8KV Air Criteria A			Criteria A
Line Frequency Harmonics	IEC/EN61000-3-2	Class A			
Voltage Fluctuations	IEC/EN61000-3-3	EN61000-3-3			
Power Frequency Magnetic Field	IEC/EN61000-4-8	1 A/m, Criteria A			4
Voltage DIP Immunity	IEC/EN61000-4-11	>30% 10ms, 60% 100ms,100% 5000ms, Criteria A,B,B			0% 5000ms,

Non-isolated Full Brick 1500Watts PFC Module

Parameters	Conditions	Min.	Тур.	Max.	Units		
	Input to output	Non-isolation					
Isolation Voltage	Input to case, <10mA, 60S	3000			VAC		
<u> </u>	Output to case, <10mA, 60S	3000			VAC		
Isolatian Danistana	Input to output	ut to output Non-isolation					
Isolation Resistance	Input to case	100			ΜΩ		
(Viso=500VDC)	Output to case	100			ΜΩ		
Switching Frequency			130		KHz		
Start Up Delay Time ^①			3	5	S		
Start-up Threshold		75	80	85	VAC		
Under Voltage Shutdown		60	70	80	VAC		
Thermal Protection	Case temperature	100	110	120	$^{\circ}\mathbb{C}$		
Thermal Protection Recover	Case temperature	90	100	110	$^{\circ}\mathbb{C}$		
Vibration	IEC61373:1999 Category I, Bo	EC61373:1999 Category I, Body mounted					
Shock	IEC61373:1999 Category I, Bo	dy mounte	ed				
Signal Specifications							
Parameters	Conditions	Min	. Тур.	Max.	Units		
Load ENA Signal	Open collector output, m	Open collector output, maximum voltage 35V					
Active	Low, 0.6V max. @100mA	Low, 0.6V max. @100mA					
Disable	Open collector	Open collector					
Sink Current Max.				100	mA		
IOG Signal	Open collector output, maximum voltage 35V						
Active	Low, 0.6V max. @100mA	Low, 0.6V max. @100mA					
Disable	Open collector	Open collector					
Sink Current Max.				100	mA		
Current Share Signal	Open collector output						
Current Share Signal Voltage	Vin=230VAC, Pout=1500	W 0		3.3	V		
Current Share Signal Voltage	Vin=115VAC, Pout=1000	W 0		3.3	V		

Notes

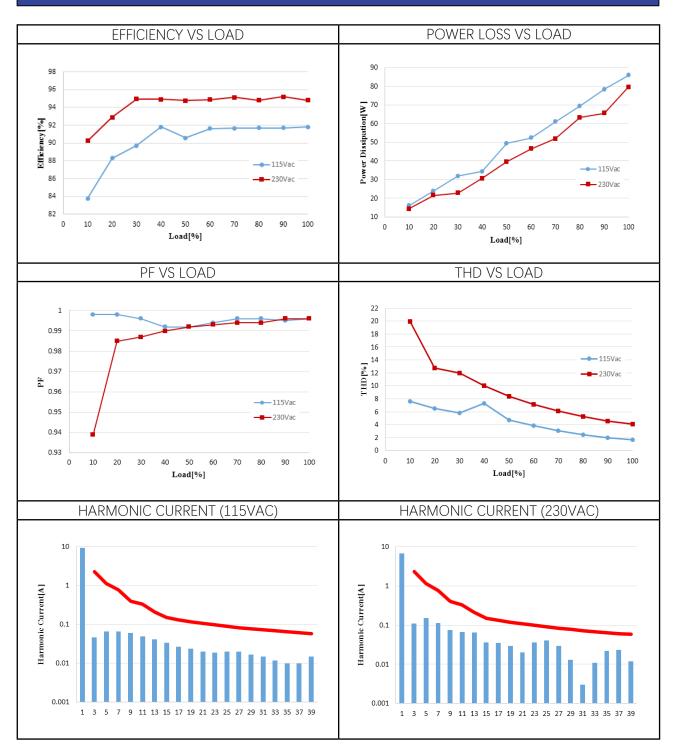
① Refer to Typical Application Connection on page 7, external resistor value is 20Ω , and aluminium electrolytic capacitor value is 1000μ F.

Non-isolated Full Brick 1500Watts PFC Module

Performance Data

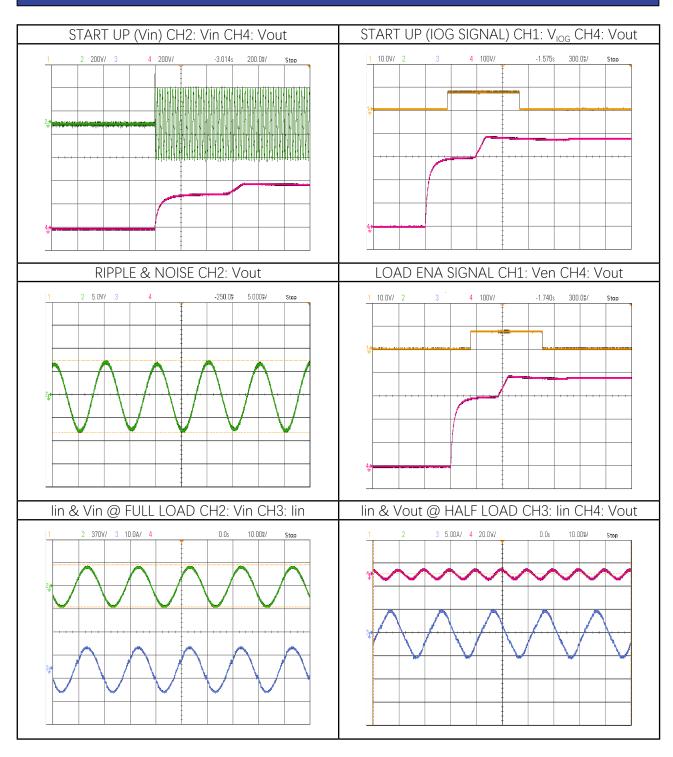
Input Specifications					
Parameters	Conditions	Min.	Тур.	Max.	Units
Input Voltage		85	115/230	264	VAC
Input Frequency		45	60/50	65	Hz
Power Factor	@ 230VAC or @ 115VAC	0.98	0.99		
THD	@ 230VAC or @ 115VAC		5	8	%
Input Current Max. (RMS)	Vin=100VAC, Pout=1000W			12.5	Α
Input Current @ No Load	Vin=115VAC/230VAC			600	mA
Power Dissipation @ No Load	Vin=115VAC/230VAC			10	W
Inrush Current-limiting Resistor	Rated power 5-10Watts	10		20	Ω
Inrush Current	Vin=230VAC, Cout=1000 μ F, external resistor R=20 Ω			25	А

Output Specifications					
Parameters	Conditions	Min.	Тур.	Max.	Units
Output Power	Vin=230VAC		1500		W
Output Fower	Vin=115VAC		1000		\bigvee
Efficiency	Vin=230VAC, Pout=1500W	93	95		%
Linciency	Vin=115VAC, Pout=1000W	88	90		%
Output Voltage Setpoint		360	380	390	VDC
Line Regulation		-1.5		+1.5	%
Load Regulation		-2.5		+2.5	%
Temperature Coefficient		-1.5		+1.5	%
Output Current	Vin=180~264VAC			4.1	Α
Output Current	Vin=85~180VAC			2.6	Α
Over Voltage Protection	Hiccup	410	430	450	V
Ripple & Noise Max. ^①				30	V pk-pk
Aux Power Output Voltage	Referred to -Vout or GND	6.5	7.5	8.5	VDC
Aux Power Output Current		0		10	mA
Hold Up Capacitance		680		2200	μF
Notes					


1 Ripple & noise is tested with 1000µF electrolytic capacitor at output.

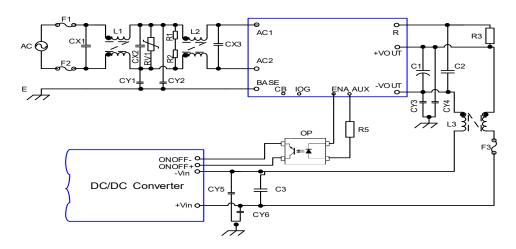
All specifications are tested at 25 °C ambient temperature, nominal input voltage, rated output current conditions unless otherwise specified.

Non-isolated Full Brick 1500Watts PFC Module


Performance Data

Non-isolated Full Brick 1500Watts PFC Module

Performance Data



Non-isolated Full Brick 1500Watts PFC Module

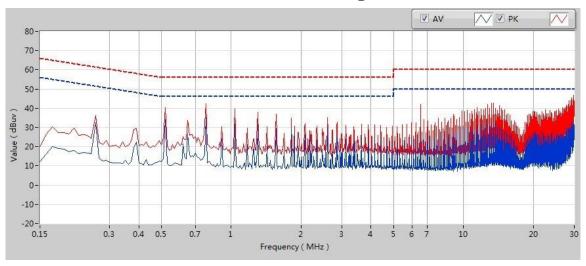
Typical Application Connection

The typical application of the PFC module is shown as below:

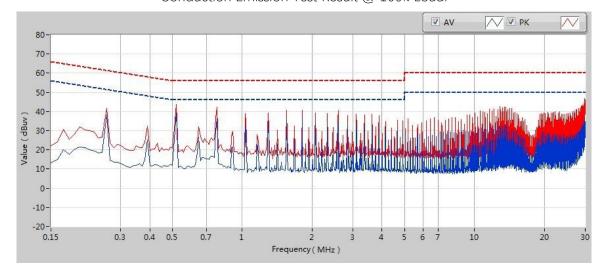
Typical Application Connection

Recommended Parameters:

REFERENCE	DESCRIPTION	MODEL NUMBER	MANUFACTURER
F1/2	FUSE, 15A, 250V, Slow-blown	GBP_A(15A)	CONQUER
CX1/2/3	2.2μF/275VAC, X2	C42P2225M9FC000	FALA
CY1/2/3/4	4700pF/250VAC, Y2	F2GA472MYGS	TDK
L1	5.5mH*2		Customized
L2	3.5mH*2		Customized
L3	200uH*2		Customized
R1/2	470K, 1/4W	RC4703F1206KI	YAGEO
RV1	D20, 510V	TVR20511KSY	THINKING
R3	20Ω/10W	RX911B-10W	YONGXING
C1	470μF/450VDC*2, aluminium electrolytic capacitor	CAE477V450MD35L30L45T2E	SEACON
C2	2.2µF/450VDC, thin-film capacitor	CCBB225V450K1T3C1	FALA
R5	330Ω	RC5100F1206KI	YAGEO
OP	Optocoupler		

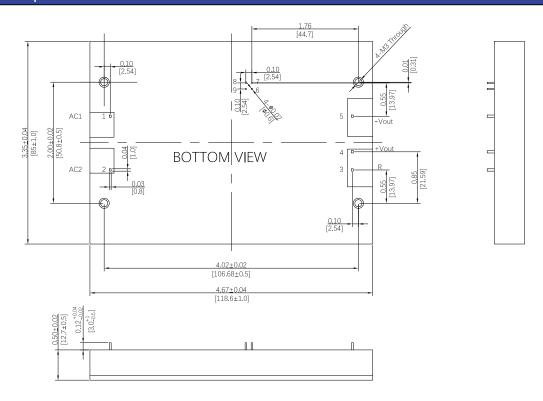


Non-isolated Full Brick 1500Watts PFC Module


Typical Application Connection

The PFC modules require external EMI filters to meet EMI standard EN55032 -Class B. Please refer to above application connection method and recommended parameters, the Conduction Emission test results at 230VAC are as follows:

Conduction Emission Test Result @ 50% Load:


Conduction Emission Test Result @ 100% Load:

Non-isolated Full Brick 1500Watts PFC Module

Mechanical Specifications

Tolerance: $X.XX = \pm 0.02[0.5]$, $X.XXX = \pm 0.010[0.25]$. Dimensions are in inches [mm].

PIN: PIN6~PIN9: Φ0.02inch, applied force not exceed 9.8N.

Material: Copper alloy

Finish: Gold $3 \sim 5\mu m(min.)$ over nickel $50\mu m(Min.)$

Weight: ~300g.

Installation method: modules installed by M3 or Φ 3 screws, each screw torque is less

than 0.7 Nm.

PIN CONNECTIONS					
Pin	Function	Description			
1	AC1	AC input no phose sequence requirement			
2	AC2	AC input, no phase sequence requirement			
3	R	External resistor for inrush current protection			
4	+Vout	+DC output			
5	-Vout	-DC output			
6	ENA	Load enable signal			
7	IOG	Inverter operation monitoring			
8	AUX	Auxiliary power supply			
9	СВ	Current balance			

Non-isolated Full Brick 1500Watts PFC Module

Technical Notes

TIMING SEQUENCE

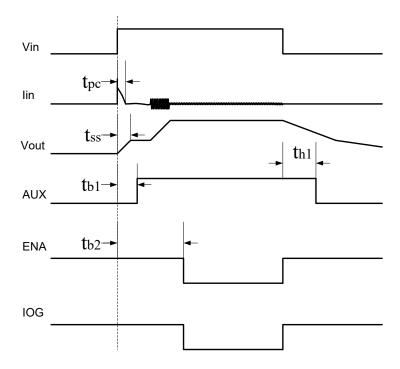


Figure 1. Timing

Parameters	Condition	Min.	Max.	Units
Vin	Input voltage, a high level indicates that the input is active			
lin	Input current			
Vout	Output voltage			
AUX	Auxiliary power supply, a high level indicates that the auxiliary power supply is active			
ENA	A low level indicates that the enable is active			
IOG	A low level indicates that the converter is active			
t _{pc}	Duration of surge current, depending on hold- up capacitor and current limiting resistor	0.5	20	mS
t _{ss}	Soft start time, depending on the input voltage, hold-up capacitor and limiting resistor	20	300	mS
t _{b1}	Auxiliary power supply setup time	100	1000	mS
t _{b2}	BUS voltage setup time	100	5000	mS
t _{h1}	Auxiliary power hold up time, depending on hold-up capacitor and load	10		mS

Non-isolated Full Brick 1500Watts PFC Module

Technical Notes

BASIC OPERATION

When the AC input voltage (Vin) is switched on, the AFF module will charge the external hold up capacitor through the external current-limiting resistor, it will generate the inrush current with duration around 20ms t_{pc} , it is essential to refer to the formular I²* t_{pc} to select the input fuse specification. The AFF module will start operating when the BUS voltage increases gradually to its nominal regulted value, after the voltage level reaches the minimum startup voltage requirement of the auxiliary power supply, the auxiliary power supply (AUX) will be presented, once the auxiliary power supply is active, the internal main controller of AFF module starts to work. If startup conditions are all set (no input undervoltage, over temperature, over voltage, etc.), the controller starts the Boost circuit and controls the internal switch to short the external current limiting resistor. When the controller detects that the BUS voltage (Vout) reaches the setting value, it pulls enable signal (ENA) to low level, this signal should be used to enable the load modules so that they can begain to draw power from the AFF module. If the controller detects any fault condition (input undervoltage, overtemperature, output overvoltage, etc.), AFF module will immediately shut down the Boost circuit and cut in the current limiting resistor, the enable signal output pin will return to a high logic and the load module will be disabled. At this condition, it is suggested to disable the load module, otherwise the AFF module may be damaged. Please refer to startup sequence on page 10.

LOAD ENABLE FUNCTION (PIN9: ENA)

Load enable signal ENA is open collector output. Only when ENA signal is low, PFC Module can be loaded. When ENA signal is open, load should be disabled. ENA signal can be used to control the load ON/OFF, as shown in figure 2. ENA signal also can be used as remote on/off function of load module to enable/disable the load module, as

shown in figure 3.

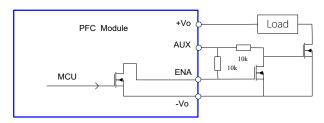


Figure 2. ENA For Connection The General Load

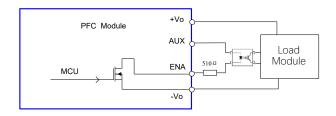


Figure 3- ENA For Load Module With Remote ON/OFF

Caution: The either the converter or the inrush limited resistor might be damaged if the output is loaded before ENA signal be activated in "LOW" status.

IOG FUNCTION (PIN7: IOG)

When the PFC module stop because of overvoltage protection, thermal protection or any other falt in the power supply, IOG signal state will change to high level from low level within 1 second. And output voltage will be equal to the full-wave rectified AC input voltage. If IOG signal status keeps high level, there is a possibility that the PFC module and/or external circuit is damaged. If this happens, please check the PFC module and/or external circuit conditions in your system.

IOG can also be used for monitoring failures such as redundant operation. When start-up or sudden change of load may cause onstable of IOG. Set the timer with delay of more than 5 seconds. During perallel operation, unstable condition may occur when load current is lower than 10% of rated value.

Non-isolated Full Brick 1500Watts PFC Module

Technical Notes

INPUT VOLTAGE DERATING

The input voltage derating curve is shown in figure 4 below. The maximum output power should be within the limit of the derating curve, otherwise the AFF1K5W2 modules could be damaged.

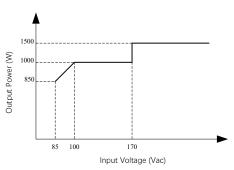


Figure 4 Input Voltage Derating Curve

AC INPUT FUSING

Certain applications may require fuse at the inputs of power conversion components. The AFF1K5W2 modules are not internally fused. We strongly recommend a slow-blown fuse to be used.

For safety agency approvals, the installer must install the converter in compliance with the end user safety standard.

INPUT UNDERVOLTAGE SHUTDOWN AND START-UP THRESHOLD

Once operating, module will not turn off until the input voltage drops below the Undervoltage Shutdown threshold. Subsequent re-start will not occur until the input is brought back up to the Start-Up Threshold. This built in hysteresis prevents any unstable on/off situations from occurring at a single input voltage.

THERMAL SHUTDOWN

These AFF1K5W2 converters are equipped with thermal shutdown circuit. If environmental conditions cause the internal temperature of the converter to rise above the designed operating temperature, a precision temperature sensor will power down the unit. When the internal temperature decreases below the threshold of the

temperature sensor, the unit will auto restart.

HOLD-UP CAPACITOR

It requires 680~2200uF capacitor at the output to ensure the PFC module stable operation. It is strongly recommend to place the output capacitor as close as possible to the PFC module output, keep the trace less than 50mm to minimize the ESR. The specification of output capacitance is determined by customers' requirements on output voltage ripple, output voltage hold-up time, working life time of ouput capacitance and other factors.

Please follow up the hold-up capacitance formula to calculate the capacitance value according to the desired hold-up time.

$$Cmin = \frac{2 \times P \times Thold}{Vo^2 - Vf^2}$$

For example, when output power P=1600W, hold-up time Thold=20ms, output voltage Vo=400V, output minimum voltage Vf=250V, the minimum capacitance of the output hold-up capacitor Cmin=660 μ F.

The formula for calculating the RMS value of ripple current of the output hold-up capacitor is shown below:

Icrms=
$$\frac{P}{2^{0.5} \times Vo}$$

For example, when output power P=1600W, output voltage Vo=400V, the RMS value of ripple current of the output hold-up capacitor lcrms=2.9A.

The formula for calculating the output voltage ripple is shown below:

$$Vpp = \frac{P}{4 \times \pi \times f \times C \times Vo}$$

For example, output power P=1600W, output voltage Vo=400V, input voltage frequency f=50Hz, output capacitance C=660 μ F, by the above

Non-isolated Full Brick 1500Watts PFC Module

Technical Notes

formula, output voltage ripple is Vpp=9.7V.

INRUSH CURRENT SUPPRESSION

When the power supply is switched on and the capacitors (mainly the output hold-up capacitors) are charged, there will be inrush current. Excessive Inrush current may damage the fuse or other devices. The build-in Inrush current limit circuit can effectively suppress the peak inrush current. The current limiting resistor should be connected between R and +Vo. Reference connection circuit is shown in figure 5 below.

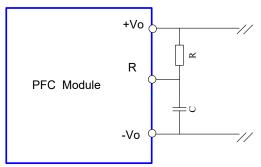


Figure 5. The Reference Connection of the Current-limiting Resistance

The recommended resistor is $10\text{-}20\Omega$ with 10W power rating and the capacitor C is 1.0uf or plus with appropriate voltage rating. The maximum lnrush current can be evaluated by the following formula:

Irush=
$$\frac{2^{0.5} \times \text{Vac}}{R}$$

The peak inrush current should be evaluated at 90 ° or 270 ° phase of AC input. In addition, the effect of X capacitance and inductance on inrush current in the filter circuit should also be taken into account.

AC INPUT FILTER

Please refer to "typical application connection" on page 7.

TEMPERATURE DERATING

The temperature derating curve is shown below:

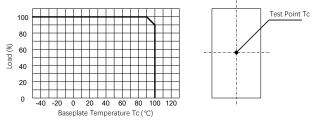


Figure 6. Temperature Derating Curve

In case that the recommended test point on the top of baseplate is not accessible, please measure the temperature at the edge of the baseplate, meanwhile, the thermal derating performance should be 5°C less than the data presents on figure 6.

CURRENT SHARE (PIN8: CB)

The parallel function can be implemented by the circuit shown in fugure 7. During parallel operation, if one of the PFC modules fails, the PFC module cannot startup with load, it will cause the enable signal to stop loading of the rear DC/DC module. At this moment, the PFC module should be disconnected from the AC input, and should be checked the cause of the fault. Only when the modules are all in good condition can they be restarted.

The following should be noted when modules parallel operation:

1. During paralled operation, since the ripple of the output current of each module is at most 10%, the total output current must meet the following equation:

(Total output current)

- = (the rated current per unit)×(number of unit)×0.9 *Maximum parallel units are limited to 5 units.
- 2. The different impedance of the module output will affect the performance of parallel connection. It is recommended to use the same line length and width at the output of each module to improve current sharing performance.
- 3. During paralled operation, reduce the input impedance of the module as much as possible. As the number of parallel machines increases, the

Non-isolated Full Brick 1500Watts PFC Module

Technical Notes

input current also increases. It is recommended to adopt suitable input circuit wiring design.

- 4. During paralled operation, if the temperature of the aluminum substrate is different, the output current will also be greatly affected. It is recommended to balance the temperature between modules by using the same heat sink.
- 5. In order to improve the reliability of the parallel system, it is recommended to use N+1 modules to realize the load of N modules and increase the redundancy of the system.

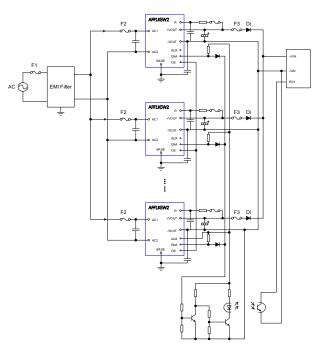


Figure 7 Typical Parallel Application

This product is subject to the following operating requirements and the Life and Safety Critical Application Sales Policy:

Refer to: http://www.densitypower.com

Density Power makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith.

Specifications are subject to change without prior notice.